

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

3RD YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE/TITLE: SPH B303: PRACTICAL PHYSICS I

END OF SEMESTER: I

DURATION: 2 HOURS

DAY/TIME: DATE: (PHY LAB)

Instructions to Candidates

1. You should have the following for this examination

Answer Booklet, examination pass and student ID

2. This paper consists of 3 questions. Attempt OLNY ONE QUESTION

3.Do not write on the question paper.

QUESTION ONE (50 MARKS)

APPARATUS:

Cathode ray oscilloscope, Dry cells power supply, Voltmeter (0 - 5V),

Variable resistance (0 - 15 ohms)

<u>AIM</u>: The aim of this experiment is to use an oscilloscope to measure potential differences and time intervals, and to display waves –form.

- 1. Set up the circuit as shown above with the time base of the CRO switched off (fully anticlockwise) choose Y gain (e.g 2 V cm⁻¹) suitable for your graph.
- 2. Plot a graph of the deflection d against the applied p.d. V
- 3. Describe the relationship between the deflection and the p.d.
- 4. Use your graph to calculate the deflection sensitivity of the CRO in mm per volt (mm V^1). Does your value agree with the calibrated gain control?

Write an elaborate report with the following subtitles;

•	Title	[1 mks]
•	Objective of experiment	[2 mks]
•	Theory	[8 mks]
•	Apparatus	[2 mks]
•	Procedure	[5 mks]
•	Results	[10 mks]
•	Discussion of the results and analysis	[20 mks]
•	Conclusion	[2 mks]

Mathematical tables and calculators may be used. The given question paper is your main reference material.

QUESTION TWO (50 MARKS)

AIM: To determine the resistance characteristics of a thermistor

Apparatus

Meterbridge, cell, standard resistance box(R) ,Sensitive galvanometer G, switch K, beaker of glycerin, Bunsen burner S=thermistor

X=shunt

Use the figure a above to set an appropriate experiment

Note that:

$$\boldsymbol{R}_1/\boldsymbol{R}_2 = \boldsymbol{R}_3/\boldsymbol{R}_4$$

$$\frac{\mathbf{R}}{\mathbf{S}} = \frac{\mathbf{A}\mathbf{D}}{\mathbf{D}\mathbf{C}}$$

Analysis

The resistance of a wire is directly proportional to its length. The resistance of the thermistor at each temperature may thus be calculated.

$S = \underline{R.L}_2$

 L_1

Plot a graph of log of the resistance against the temperature.

Worksheet 20

Resistance of resistance box (ohm's)

Temperature ⁰ C	L ₁ cm	$L_2 \text{ cm}$	S ohm	Log S

Plot a graph of log S against temperature.

Comment on your results.

Questions

- 1. Why do you use a shunt on the galvanometer?
- 2. Why do you use a meter bridge for the measurements rather than a Voltmeter and an Ammeter?
- 3. Why is it simpler to the log of the resistance of the thermistor against temperature rather than the resistance against temperature ?
- 4. State two practical applications of the thermistor.

Conclusion

Write a report under with the following subtitles;

• Title	[1 mks]
• Objective of experiment	[2 mks]
• Theory	[8 mks]
• Apparatus	[2 mks]
• Procedure	[5 mks]
• Results	[10 mks]
• Discussion of the results and analysis	[20 mks]
Conclusion	[2 mks]

Mathematical tables and calculators may be used. The given question paper is your main reference material.

QUESTION THREE (50 MARKS)

CHARGE AND DISCHARGE OF A CAPACITOR

AIM The aim of the experiment is to study the rate of charge and discharge of a capacitor through a high resistance:

APPARATUS:

D.C. supply of 4.5 - 9v, Voltmeter (0-5V), 2 capacitor (470 μ f), 3 clip component holders, Resistor 256 k Ω 2 resistors 333 Ω , Micro-ammeter : (0-100 μ A) Oscilloscope and a Wrist-watch or stop - clock.

Set the circuit as shown in figure below arid record the voltmeter reading V_0

- 1. The capacitor can be charged and given a p.d Vo. by connecting the flying lead J to point X. Keep J in contact with X for one minute then disconnect, the flying lead and record the current through the miro-ameter every 10 seconds as the capacitor discharge for the two minutes
- 2. It is difficult to record the current I_0 flowing at the instant of disconnection but I_0 can be calculated from the Voltmeter reading. I_0 is the current flowing through resistance R when the p.d, across the capacitor and across the resistor is V_0 calculate I_0
- 3. Draw a graph of discharge Current (y axis)- against time (x—axis) for the period of 2 minutes.

- 4. Mark on your graph any instant t and record the current I at that instant. Measure the time t, for the current to fall from I to half this value (I/2).
- 5. Repeat the calculation for three other instances measuring the period t during which the current is halved.
- 6. What kind of delay curve is the graph of discharge current against time? Give a reason for your answer.

Write a report under with the following subtitles;

Write a report under with the following subtitles;

• Title	[1 mks]
Objective of experiment	[2 mks]
• Theory	[8 mks]
• Apparatus	[2 mks]
• Procedure	[5 mks]
• Results	[10 mks]
• Discussion of the results and analysis	[20 mks]
Conclusion	[2 mks]

Mathematical tables and calculators may be used. The given question paper is your main reference material.