INSTRUCTION: ANSWER ALL QUESTIONS.

QUESTION 1.

(a) (i) Explain what is meant by the Uncertainty Principle.
(ii)Consider a radio pulse lasting 0.0010 s . The position uncertainty of this pulse is $\Delta x=3.0 x 10^{-5} \mathrm{~m}$. Determine the uncertainty in the momentum of the pulse and the uncertainty in the frequency of the pulse.
(b) State two of Bohr's postulates.
(c) From Bohr's theory of the atom, derive the expression for the Bohr radius of an atom.
(d) Compute the value of the energy for an electron in the ground state

$$
E=\frac{m_{e} e^{4}}{2\left(4 \pi \varepsilon_{0}\right)^{2} \hbar^{2}} \frac{1}{n^{2}} \text {. Give your answer in electron volts. where } n=1 \quad[7 \text { points }]
$$

QUESTION 2.

A particle of mass $\mathrm{m}=9 \times 10^{-31} \mathrm{~kg}$ is confined to move in a one dimensional region of length $0<x<L$. Inside the region the potential is zero, and outside the potential is infinite.
(a) Write down the Hamiltonian of the particle if its charge is $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$. [3points]
(b)Write down the Schrodinger equation for the particle.
(c) Given that the solution of the Schrodinger equation is,

$$
\Psi(x)=N \sin (k x)
$$

(i) Determine the normalization constant N.
(ii) Determine the value of k.
(iii) Compute the total energy of the particle in electron volts.

QUESTION 3.

(a) Explain the meaning of the following terms:
(i) Valence band and conduction band.
(ii) Rectifier diode.
(iii) Quantum well dot.
(b) (i) Explain what is meant by nuclear binding energy.
(ii) Compute the nuclear binding energy of the isotope ${ }^{238} \mathrm{U}$. Express the energy in MeV . The mass of one atom of this isotope is 238.0508 u .
(Here $\mathrm{A}=238$ and $\mathrm{Z}=92 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}$ and $\mathrm{c}=2.9979 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$).

