

4th YEAR EXAMINATION FOR BACHELOR OF SCIENCE, BACHELOR OF SCIENCE (INDUSTRIAL CHEMISTRY) AND BACHELOR OF EDUCATION SCIENCE

(INSTITUTIONAL BASED PROGRAMME)

COURSE CODE/TITLE: SPH B203 MODERN PHYSICSEND OF SEMESTER IIDURATION: 2HOURSDAY/TIME:MONDAY:9.00-11.00 AMDATE:29/04/2019 (2ndF/EW)

INSTRUCTION: ANSWER ALL QUESTIONS.

QUESTION 1.

(a) (i) Explain what is meant by the Uncertainty Principle.	[3points]
(ii)Consider a radio pulse lasting 0.0010 s. The position uncertainty of this pulse	
is $\Delta x = 3.0x10^{-5} m$. Determine the uncertainty in the momentum of the pulse	
and the uncertainty in the frequency of the pulse.	[6points]
(b) State two of Bohr's postulates.	[3points]
(c) From Bohr's theory of the atom, derive the expression for the Bohr radius of an	
atom.	[6points]
(d) Compute the value of the energy for an electron in the ground state	

$$E = \frac{m_e e^4}{2(4\pi\varepsilon_0)^2 \hbar^2} \frac{1}{n^2}$$
. Give your answer in electron volts. where $n = 1$ [7points]

QUESTION 2.

A particle of mass $m = 9x10^{-31}$ kg is confined to move in a one dimensional region of length 0<x<L. Inside the region the potential is zero, and outside the potential is infinite.

- (a) Write down the Hamiltonian of the particle if its charge is $e = 1.6 \times 10^{-19}$ C. [3points]
- (b)Write down the Schrodinger equation for the particle. [4points]
- (c) Given that the solution of the Schrodinger equation is,
 - $\Psi(x) = N\sin(kx)$
 - (i) Determine the normalization constant *N*. [6points]
 - (ii) Determine the value of k. [5points]
 - (iii) Compute the total energy of the particle in electron volts. [7points]

QUESTION 3.

(a) Explain the meaning of the following terms:

- (i) Valence band and conduction band. [3points]
 (ii) Rectifier diode. [3points]
 (iii) Quantum well dot. [4points]
 (b) (i) Explain what is meant by nuclear binding energy. [3points]
 (ii) Compute the nuclear binding energy of the isotope ²³⁸U. Express the energy
 - in MeV. The mass of one atom of this isotope is 238.0508 u. [7points]

(Here A = 238 and Z = 92 u = 1.6605×10^{-27} kg and c = $2.9979 \times 10^{8} \frac{m}{s}$).