

UNIVERSITY OF EMBU

2019/2020 ACADEMIC YEAR

SECOND SEMESTER EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION, BACHELOR OF SCIENCE, BACHELOR OF SCIENCE IN ANALYTICAL CHEMISTRY, **BACHELOR OF SCIENCE IN INDUSTRIAL CHEMISTRY**

SCH 401: CHEMISTRY OF TRANSITION ELEMENTS

DATE: OCTOBER 15, 2020 INSTRUCTIONS:

TIME: 8.30 – 10.30AM

Answer Question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

a)	What is a transition element ?	(2 marks)				
b)	Explain why TiO_2 and $ZnSO_4$ are white compounds	(2 marks)				
c)	Suggest with reasons the electronic configurations of Cr and Cu.	(3 marks)				
d)) VCl_2 is ionic while VCl_5 is covalent. Account for this observation. (2 n					
e)	State and explain the general variation trend in the density down the					
	group of transition metals in the periodic table	(3 marks)				
f)	Explain why the transition metal complex containing metal ion in higher					
	oxidation state complex is more stable than the one in the lower oxidation	on				
	state.	(2 marks)				
g)	Explain why Cr^{2+} is a powerful reducing agent while Mn^{2+} is not	(3 marks)				
h)	$[Ni(Cl)_4]^{2-}$ is paramagnetic while $[Ni(CN)]^{2-}$ is diamagnetic.					

ISO 27001:2013 Certified

Knowledge Transforms Page 1 of 4

ISO 9001:2015 Certified

	Explain this observation.	(3 marks)
i)	Cu^+ ion has $3d^{10}4s^0$ configuration and colourless but Cu_2O is red and Cu_2S	
	is black. Explain	(3 marks)
j)	Cu, Ag and Au are considered as transition elements while Zn, Cd and Hg	
	are not although all the mentioned elements have complete d-orbitals.	
	Explain.	(3 marks)
k)	Scandium forms no coloured ions, yet it is regarded as a transition element.	
	Explain	(2 marks)
1)	Draw the structure for $[Cu(NH_3)_4(H_2O)_2]^{2+}$ complex.	(2 marks)

QUESTION TWO (20 MARKS)

a)) Explain why transition metals readily form complexes					
b)	Whereas both aluminum and chromium form stable compounds with chlorine					
	namely AlCl ₃ and CrCl ₃ only chromium forms a stable compound with carbon					
	monoxide namely chromium hexacarbonyl Cr(CO) ₆	(5 marks).				
c)	Describe the sulphate process for the manufacture of the pigment grade TiO_2	(7 marks)				
d)	Discuss the existence of NbI ₅ and VI_5	(5 marks).				

QUESTION THREE (20 MARKS)

a)	Expla	in how charge transfer and d-d transitions contribute to coloured						
	compounds of transition metals.							
b)	Account for the following observations in the properties of transition metal							
	el	ement						
	i)	$[Ni(NH_3)_6]^{2+}$ is blue while $[Ni(H_2O)_6]^{2+}$ is green	(3 marks					
	ii)	The highest oxidation state for the early transition metal elements, Sc,						
		Ti, V, Cr, and Mn is the group number. On the other hand the highest						
		oxidation state for the later elements of the same period (Fe, Co, Ni						
		and Cu) is less than the group number.	(5 marks)					
c)	Discu	ss the changes across the period of atomic radii in the first transition						
	se	ries.	(4 marks)					

Knowledge Transforms

QUESTION FOUR (20 MARKS)

a)	Discuss the characteristics of stable compounds	(4 marks)								
b)	What are the effects and consequences of Lanthanide contractions?									
c)	Briefly explain how pure form of Manganese can be obtained from Pyrolusite									
	MnO ₂	(5 marks)								
d)	Explain the differences in hardness in Chromium and zinc.	(3 marks)								
<u>QI</u>	QUESTION FIVE (20 MARKS)									
a)	Explain why MnO is basic while Mn ₂ O ₇ is strongly acidic	(4 marks)								
b)	Outline the method for the extraction of manganese from any of the ore of									
	your choice and give all the equations of the reactions involved.	(5 marks)								
c)	Briefly describe four steps that may be followed during the extraction of									
	metals from their ores .	(8 marks)								
d)	Biologically iron is the most important transition element. Explain in									
	three ways why this may be the case.	(3 marks)								

-END-

ISO 27001:2013 Certified

Knowledge Transforms

ISO 9001:2015 Certified

Page **3** of **4**

18 1 2 13 14 15 16 17 2 1 Н He 1.008 4.003 3 10 4 5 6 7 8 9 В С Ν 0 F Be Ne Li 10.81 12.01 14.01 19.00 20.18 6.941 9.012 16.00 11 11 9 10 18 12 3 4 5 6 7 8 12 13 14 15 16 17 Na Mg AI Si Ρ S CI Ar 26.98 28.09 30.97 32.07 35.45 39.95 22.99 24.31 33 35 36 26 27 28 32 34 19 20 21 22 23 24 29 30 31 25 Sc Ti ۷ Cr Mn Fe Co Ni Cu Zn Ga Ge As Br Kr Κ Ca Se 44.96 58.69 63.55 65.39 69.72 72.61 74.92 78.96 79.90 83.80 39.10 40.08 47.88 50.94 52.00 54.94 55.85 58.93 52 39 46 50 53 54 37 38 40 41 42 43 44 45 47 48 49 51 Sb Xe Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd Sn Te In 95.94 98.91 112.4 127.6 126.9 85.47 87.62 88.91 91.22 92.91 101.1 102.9 106.4 107.9 114.8 118.7 121.8 131.3 57* 85 55 56 72 73 75 76 77 78 79 80 82 83 84 86 74 81 ΤI Pb At Cs Ba Hf Ta W Re 0s lr Pt Au Hg Bi Ро Rn La (222) 192.2 197.0 200.6 204.4 207.2 209.0 (209)(210)137.3 138.9 178.5 183.8 186.2 190.2 195.1 132.9 180.9 89** 107 109 87 88 104 105 106 108 Db Hn Mt Fr Ra Ac JI Rf Bh (226) (227) (261) (262) (263) (?) (223) (262) (?)

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(147)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
**	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	(232)	(231)	(238)	(237)	(239)	(243)	(247)	(247)	(252)	(252)	(257)	(256)	(259)	(260)

PERIODIC TABLE

•)