UNIVERSITY OF NAIROBI UNIVERSITY EXAMINATIONS 2020/2021

SECOND YEAR C.A.T FOR
THE DEGREES OF : BACHELOR OF SCIENCE (GENERAL), BACHELOR OF SCIENCE (CHEMISTRY),BACHELOR OF SCIENCE (GEOLOGY), BACHELOR OF SCIENCE (METEOROLOGY), BACHELOR OF SCIENCE (PETROLEUM GEOSCIENCE)

SMA 201: ADVANCED CALCULUS
MARCH 23, 2021 (4:40pM-6:40PM)

ATTEMPT QUESTION ONE AND ANY OTHER TWO QUESTIONS

Question 1 [30 marks]
(a) Find the volume of the solid that lies under the paraboloid $z=x^{2}+y^{2}$ and above the region D in the $x y$-plane bounded by the line $y=2 x$ and the parabola $y=x^{2}$.
(b) Find the domain of the function

$$
f(x, y)=\frac{\sqrt{x+y+1}}{x-1}
$$

and evaluate $f(3,2)$.
(c) If $f(x, y)=x^{2} \cos y+y^{2} \sin x$, verify that $f_{x y}=f_{y x}$.
(d) If $f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}}$, does $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist?
[4 marks]
(e) Evaluate the iterated integral $\int_{0}^{3} \int_{1}^{2} x^{2} y d y d x$
[4 marks]
(f) Find an approximate value for the integral $\iint_{R}\left(x-3 y^{2}\right) d A$, where
$R=\{(x, y): 0 \leq x \leq 2,1 \leq y \leq 2\}$, by computing the double Riemann sum with partition lines $x=1$ and $y=\frac{3}{2}$ and taking $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ to be the center for each rectangle.
[4 marks]
(g)Find the tangent plane to the elliptic paraboloid $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$.
[4 marks]
(h) Evaluate $\iint_{D}(x+2 y) d A$, where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$
(a) Verify that

$$
f(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

satisfies Laplace's equation

$$
f_{x x}+f_{y y}=0
$$

[3 marks]
(b) If

$$
U(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)
$$

then verify that

$$
U_{x x}+U_{y y}=0
$$

(c) If

$$
z=\frac{x y}{x-y}
$$

show that

$$
x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=0
$$

(d) Show that

$$
f(x, t)=e^{(x-a t)}
$$

satisfies the wave equation

$$
a^{2} f_{x x}=f_{t t}
$$

(e) The profit function of a store rearing chicken is given by

$$
P\left(p_{1}, p_{2}\right)=-3960+178 p_{1}+274 p_{2}+2 p_{1} p_{2}-3 p_{1}^{2}-2 p_{2}^{2}
$$

where p_{1} is the retail price of a broiler, p_{2} is the retail price (in dollars) of a toaster, and both p_{1} and p_{2} are non-negative. How should the retail store price its broilers and toasters to maximize profit?
(a) A rectangular box without a lid is to be made from $12 m^{2}$ of cardboard. Find the maximum volume of such a box using Lagrange multipliers.
[10 marks]
(b) Find the volume of the solid S that is bounded by the elliptic paraboloid $x^{2}+2 y^{2}+z=16$, the planes $x=2$ and $y=2$, and the three coordinate planes.
(c) Evaluate the iterated integral $\int_{0}^{1} \int_{x^{2}}^{x^{3}}\left(x^{2}+y^{2}\right) d y d x$
(d) Show that the function

$$
U(x, y)=e^{x} \sin y
$$

is a solution of Laplace's equation.

Question 4
[20 marks]
(a) Define local minimum and local maximum values of a function $f(x, y)$ of two variables.
(b) If $z=e^{x} \sin y$ where $x=s t^{2}$ and $y=s^{2} t$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$
(c) Find and classify all the local extrema of the function

$$
f(x, y)=x^{4}+y^{4}-4 x y+1
$$

(d) Define gradient of a function of three variables x, y, z.
(e) Find the gradient of the function

$$
f(x, y, z)=x \sin (y z)
$$

(f) If

$$
z=f(x, y)=x^{2}+3 x y-y^{2}
$$

find the differential $d z$ of the function.
(a) Find the centre of mass for the thin plate bounded by the curves $g(x)=\frac{x}{2}$ and $f(x)=\sqrt{x}$, $0 \leq x \leq 1$ with the density function $\delta(x)=x^{2}$
(b) Find the mass of the triangular lamina with vertices $(0,0),(0,3)$ and $(2,3)$, given that the density at x, y is $\rho(x, y)=2 x+y$.
(c) For what value of p is the integral

$$
\int_{1}^{\infty} \frac{d x}{x^{p}}
$$

convergent?
(d) Evaluate

$$
\int_{0}^{3} \frac{d x}{x-1}
$$

if possible.
(e) The profit obtained by producing x units of product A and y units of product B is approximated by the model

$$
p(x, y)=8 x+10 y-(0.001)\left(x^{2}+x y+y^{2}\right)-10000
$$

Find the production level that produces a maximum profit.

