INSTRUCTIONS: • Answer QUESTION 1 or QUESTION 2 .

- Write your FULL NAME and ADMISSION NUMBER on each page of your solutions.
- Upload your solutions in ONE FILE. Solutions sent via email will not be marked.
- Use dark pen on size A4 pages for clarity.

QUESTION 1

(a) A random variable X has the following probability density function.

$$
f(x)=k e^{-\lambda x}, x>0, k \text { is an unknown constant. }
$$

(i) Express the constant k in terms of the parameter λ.
(ii) Determine the standard deviation of X using its moment generating function.
(b) The number of boys, X, in a family of eight children has a binomial distribution where the chances of a boy are equal to the chances of a girl being a member of the family. Determine the probability of the family having 2 boys or at least 4 girls.
(c) Records of a particular open-air kiosk indicate that over a certain period, profits, X , are normally distributed. Further information reveals that the chances of realizing a profit of at least $£ 18.24$ are 67% while the chances of realizing at most $£ 27.84$ are 97.5%.
(i) Determine the mean and standard deviation of the profits generated.
(ii) Determine $\mathrm{P}\{|\mathrm{X}-\mu| \leq 12\}$, where μ is the mean profit.
(d) Determine the number of times a fair die must be tossed so that the probability of the ratio of the number of fives realized to the number of tosses being between $1 / 18$ and $5 / 18$ is at least ${ }^{15} /{ }_{16}$.

QUESTION 2

(a) Consider the following joint probability density function of the random variables X and Y .

$$
\begin{aligned}
f(x, y) & =k x^{2} y e^{-x}, \quad x>0 ; 0<y<1, \\
& =0, \text { otherwise. }
\end{aligned}
$$

(i) Determine the value of the constant k. (ii) Compute $E\left(X^{-3} Y^{4}\right)^{-1}$
(ii) Determine the conditional mean of X^{2} given Y. What can you say about the two random variables?
(b) Two independent random variables X_{1} and X_{2} are taken from population X which has the following probability density function.

$$
\begin{aligned}
f(x) & =e^{-x}, x>0 \\
& =0, \text { otherwise }
\end{aligned}
$$

Use change of variable technique to determine the probability density function of

$$
\mathrm{Z}=\mathrm{X}_{1} \mathrm{X}_{2}^{-1}
$$

(c) Ten identically distributed random variables $X_{1}, X_{2}, X_{3}, \ldots, X_{10}$ are taken from a normally distributed population X with mean 3 and variance 4 . Write down an expression of the ten random variables which has (i) $\mathrm{N}(0,4) \quad$ (ii) $\mathrm{F}(4,5) \quad$ (iii) $\mathrm{T}(3)$

