

MOI UNIVERSITY

OFFICE OF THE DEPUTY VICE CHANCELLOR (ACADEMICS, RESEARCH & EXTENSION)

UNIVERSITY EXAMINATIONS 2018/2019 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATION

FOR THE DEGREE OF

BACHELOR OF SCIENCE,

BACHELOR OF SCIENCE WITH

EDUCATION & ARTS EDUCATION

COURSE CODE:

MAT 317

COURSE TITLE:

NUMERICAL ANALYSIS I

DATE:

12TH JULY, 2019

TIME: 9.00 A.M.-12.00 NOON

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF (4) PRINTED PAGES

PLEASE TURN OVER

MOLUNIVERSITY

UNIVERSITY EXAMINATIONS

MAIN EXAMINATION

2018/2019 ACADEMIC YEAR

THIRD YEAR, SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF EDUCATION, BACHELOR OF SCIENCE, BACHELOR OF SCIENCE WITH EDUCATION BACHELOR OF ARTS WITH EDUCATION.

COURSE CODE:

MAT 317

COURSE TITLE:

NUMERICAL ANALYSIS 1

INSTRUCTION TO CANDIDATES

Attempt ALL questions in Section A and any THREE questions in sections B.

SECTION A: (31 MARKS)

QUESTION ONE (16 MARKS)

(a) Find the interval of length 1 for which the root of the equation $x \log_{10} x - 1.2 = 0$ lie.

(3mks)

(b) Find the approximate value of the root of the equation $x^3 + x - 1 = 0$ near x = 1 using the method of false position. Perform three iterations.

(5mks)

(c) Use Simpsons $\frac{1}{3}$ rule with n = 6 to estimate to three decimal places $\int_1^4 \sqrt{1+x^3} \, dx$

(4mks)

(d) The values in the table below are for a polynomial of degree three.

AND DESCRIPTION OF THE OWNER, THE OWNER, WHEN PERSON OF THE OWNER, WHE			1		
X	1	2	, 3	4	5
f(x)	2	5	7	_	22

The value for f(4) is missing, use interpolation techniques to find this missing value.

(4mks)

QUESTION TWO (15 MARKS)

(a) Find the first and second derivatives of the functions tabulated below at the point x = 1.1

X	1	1.2	1.4	1.6	1.8	2.0
У	0	0.1	0.5	1.25	2.4	3.01
						H:D

(5mks)

- (a) Given that x_n is an approximation to the root of the equation $x^3 3x^2 4 = 0$
- (i) Show using Newton Raphson method that a better approximation x_{n+1} is given by $x_{n+1} = \frac{2x_n^3 3x_n^2 + 4}{3x_n^2 6x_n}$ (5mks)
- (ii) Hence taking the first approximation $x_1 = 3.5$, find to five decimal places the root of the equation (5mks)

SECTION B (39 MARKS)

QUESTION THREE (13 MARKS)

- (a) (i) Give the condition in which Jacob's iterative method can be used to solve a system of simultaneous equations (3mks)
 - (ii) Hence use the Jacob's method to six steps to solve the system of equations

$$4x + y + 3z = 17$$

$$x + 5y + z = 14$$

$$2x - y + 8z = 12$$

(8mks)

(b) Show that
$$(\nabla^2 2^x) = 2^x - 2 \cdot 2^{x-h} + 2^{x-2h}$$

(2mks)

QUESTION FOUR (13 MARKS)

(a) The table below satisfies the function y = f(x)

X	-4	-2	0	2	4	6	8	10	12
f(x)	422	38	-10	-10	134	902	3158	8150	17510

Use Newton forward or backward finite difference to evaluate

(i) f(-3.6)

(ii) f (10.8)

(10mk)

(b) What is meant by interpolation as used in Numerical Analysis?

(3mks)

QUESTION FIVE (13 MARKS)

(a) Solve the system of equations below using the Gauss - Seidel rule method up to the 4th iteration

$$6x + y + z = 105$$

$$4x + 8y + 3z = 155$$

$$5x + 4y - 10z = 65$$

(7 mks)

(b) Find the form of the function f(x) under suitable assumption from the following data using Newton's divided difference interpolation formula, hence find the value of f(4.6)

X	0	1	2	5
f(x)	2	3	12	147

(8 Mks)

QUESTION SIX (13 NARKS)

(a) Given that f(0) = 1, f(1) = 3 and f(3) = 55

i. Find the lagrange interpolation polynomial which fits the data (5mks)

ii. Hence find the approximate value of f (2)

(3mks)

(b) Use Simpsons - $\frac{3}{8}$ rule to estimate $\int_0^3 \frac{1}{1+x} dx$ when n = 6 giving your answer correct to four decimal places. (5mks)

QUESTION SEVEN (MARKS)

(a) Use trapezoidal rule with n = 8 to estimate $\int_{1}^{5} \sqrt{1 + x^2} dx$ correct to two decimal places (6mks)

(b) Use the lagrange inverse interpolating formula to obtain the value of x when y = 19 given the following values of x and y (5mks)

X	0	T1	20
Y	0	1	20

(c) What is meant by iteration as used in numerical analysis

(2mks)