

Term 2 - 2021

CHEMISTRY (233/1)

PAPER 1

FORM THREE (3)

Time: 2 Hours

	Name:
	School: Class:
	Signature:Date:
<u>I</u> I	NSTRUCTIONS TO CANDIDATES
a)	Write your name, class and house in the spaces provided above
b)	Sign and write the date of the examination in the spaces provided above.
c)	Answer ALL the questions in the spaces provided in the question paper.
d)	KNEC mathematical tables and electronic calculators may be used.
e)	All working MUST be clearly shown where necessary.
f)	This paper consists of 11 printed pages
g)	Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.
h)	Candidates should answer the questions in English.
	For Examiner's Use Only

Question Maximum Score Candidate's Score 1-16 80

1) The set up below can be used to prepare oxygen gas. Study it and answer the questions that follow:

a) Identify X.	(1 mk)
b) What property of oxygen makes it poss set-up?	ible for it to be collected as shown in the above
	(1mk)
c) State <u>two</u> uses of <i>oxygen gas</i> .	(1 mk)

2) Write equations to show the effect of heat on each of the following:

a)	Sodium hydrogen carbonate	(1mk)
b)	Silver nitrate	(1 mk)

c) Anhydrous Iron (II) Sulphate (1 mk)

3) Describe an experimental procedure that can be used to <i>extract oil from nut seeds</i> . (2)	2 mks)
4) In terms of <i>structure and bonding</i> , explain the following observations:	
a) the <i>melting point</i> of Aluminium is higher than that of Sodium (1 ½ mks)	
b) the <i>melting point</i> of Chlorine is lower than that of Sulphur. (1 ½ mks)	
5) During welding of cracked railway lines by the Kenya Railways Corporation, $12.0g$ of iron is reduced by aluminium to $8.40g$ of iron. Determine the empirical formula oxide. (Fe = 56.0 , O = 16.0) (3 mks	of the

6) The scheme below shows a reaction sequence starting with Solid N. Study it and answer the questions that follow.

- a) Write the formula of the complex ion in **Solution Q**. (1 mk)
- b) Write a *stoichiometric equation* for the reaction in **Step** (**IV**). (1 mk)
- 7) a) State *Charles' Law*. (1 mk)

b) A certain mass of gas occupies **146 dm³** at **291K** and **98.31kPa**. What will be its temperature if its volume is reduced to **133 dm³** at **101.325kPa**? (2 mks)

8) Diamond and graphite are <i>al</i>	<i>lotropes</i> of carbon.	
a) What	is meant by the term <i>allotrope</i> ?	(1mk)
b) Explain why graphite car	n be used as a lubricant while dia	mond cannot. (2 mks)
On reacting K with dilute Hydr	d K , Carbon (IV) oxide gas and a cochloric acid, Carbon (IV) oxide ammonia was added to solution	gas and a green solution ${\bf S}$ were
a) Identify the <i>cation</i> in	Solid K . (1 mk)	
b) Identify two <i>anions</i> is	in Solution S . (2 mks)	
	effect of an electric current on sul ne student used inert electrodes, a es used and their states.	• • •
Experiment	Substance	State
1	Potassium carbonate	Solid
2	Copper (II) sulphate	Solution
3	Sugar	Solution
4	Lead (II) iodide	Molten
a) In which experiments b) Explain your answer in	-	k)

Volume of Solution B (cm³)	16.6	16.0	16.0		
(cm ³)	17.7	17.0	160		
Initial burette reading	10.0	<i>34</i> .U			
Titration Final burette reading (cm ³)	1 16.6	2 32.6	3		
Volume of the pipette used cm ³ (Solution A) (1 mk)					
20.0 cm³ portions of solution A results were obtained.	were titrated with soluti	on B from the burette	and the following		
Solution B is a 0.25M of Hydrod					
Solution A was made by dissolv made up to 1 litre of the solution	= =	bonate, X₂CO₃ in dis	tilled water and		
13) A Form 3 student was provious answer the questions that follow	_	olutions; Study the ir	nformation and		
12) Starting with Zinc carbonate(4 mks)	describe how would yo	ou prepare hydrated Z	inc sulphate.		
Calculate the percentage relativ	e abundance of each iso	otope. (3 mks)			
11) Element J has two isotopes	•		mass is 39.0 7.		

(4 mks)

a) Complete the table above

b) Calculate the average volume of solution B used. (1 mk)
c)Name a suitable indicator for this reaction. (1 mk)
d) Write a stoichiometric equation for the reaction taking place. (1 mk)
e) i) Calculate the moles of Solution B used. (2 mks)
ii) Determine the number of moles of solution A used in the reaction. (2 mks)
iii) Calculate the concentration of Solution A in moles/litre . (1 mk)
iv) Calculate the Relative Atomic mass of X in Solution X_2CO_3 (H=1; C = 12; O = 16) (2 mks)

14) The	grid below	represents	part of the j	periodic table.	Study it an	d answer th	e questions that
follow.	The letters	do not repr	esent the ac	ctual symbols o	of elements.		

		N	P	T	
M					
R					

i)	Select a letter	which re	epresents an	element 1	hat loses	electrons	most readily.	Give a
reason	for your answ	er.	(2 mks)					

ii)	Explain wh	v the atomic	radius of P	is found to	he smaller t	han that of N.	(2 mks)

b) Use the information in the table below to answer the questions that follow. The letters are not the symbols of the elements.

Element	State of oxide at	Type of oxide	Bonding in oxide
	room temperature		
\mathbf{U}	Solid	Acidic	Covalent
W	Solid	Basic	Ionic
X	Liquid	Neutral	Covalent
Y	Gas	Neutral	Covalent

Identify a letter which represents an element in the table that could be Calcium, Carbon or Sulphur. Give a reason in each case.

i)	Calcium	(1 mk)
Reas	on:	(1 mk)
ii)	Carbon	(1 mk)
Reas	on:	(1 mk)
iii)	Sulphur	(1mk)
Reas	on:	(1mk)

15) The chart below shows how nitric acid is produced on a large scale. Study it and answer the questions that follow.

a)	State	the	fund	ctions	of the:

b) Identify:

c) Write equations for the reaction that take place in the absorption tower. (1 mk)

d)	Mixture that comes out is 65% nitric (V) acid and 35% water. How would concentration of nitric (V) acid be increased?	the (1 mk)
e)	Calculate the molarity of commercial nitric (V) acid, that is 68% pure and of 1.42 g/cm³ (N=14, H=1, O=16)	has a density (2 mks)
f)	Why does nitric (V) acid appear yellow?	(1 mk)
g)	Why is nitric (V) acid stored in brown bottles?	(1 mk)
h)	State and explain the observations made when copper metal is reacted with (V) acid.	n dilute nitric (2 mks)
i)	State three uses of nitric (V) acid	(3 mks)

- A sample of **2.34 g** of a metal P displaced **3.20 g** of Copper from excess aqueous Copper (II) Sulphate (P = 69; Cu = 64)
 - a) Determine the charge on an ion of metal P. (3 mks)

b) Write an ionic equation for the reaction. (1 mk)